
The Role of Trust in Information Integrity Protocols�

G. J. Simmons Catherine Meadows

P. O. Box 365 Center for High Assurance Computer Systems

Sandia Park, NM 87047 Naval Research Laboratory

Washington, DC 20375

Abstract

Paradoxically, one of the most important { and at the same time, probably one of the least understood {

functions performed by information integrity protocols is to transfer trust from where it exists to where it

is needed. Initially in any protocol, there are at least two types of trust: trust that designated participants,

or groups of participants, will faithfully execute their assigned function in the protocol and trust in the

integrity of the transfer mechanism(s) integral to the protocol. Consequently, almost all protocols enforce a

set of restrictions as to who may exercise them { either spelled out explicitly or left implicit in the protocol

speci�cation. In addition there may be unanticipated or even unacceptable groupings of participants who

can also exercise the protocol as a result of actions taken by some of the participants reecting trusts that

exist among them. Formal methods are developed to analyze trust as a fundamental dimension in protocol

analysis and proof.

1 Introduction

Since the notion of having to specify trust relationships { central as it is to the analysis of protocols { is still a

relatively unfamiliar one, we start by briey describing a familiar example which clearly illustrates a transfer

of trust. The example is a of key distribution protocol for an open link communication network in which

there is a universally and unconditionally trusted key generation center (KGC) with whom each subscriber

has a trusted (secret and authenticated) private communication link, such as a DES link using the subscribers

private key. Since each subscriber trusts the KGC { to protect his key, to authenticate all subscriber requests

and responses and most importantly, to faithfully execute the key distribution protocol, there are several

protocols available that make it possible for two subscribers who have had no prior exchange of information

to end up in possession of a private session key they both trust to keep secret their communication and to

vouchsafe the identity of the other party. In a particularly simple example, if A wishes to set up a secure

session with B, he sends a cipher to the KGC (encrypted with the private key he shares with the KGC)

identifying B, providing required message identi�ers, time stamps etc. The KGC responds with a cipher

(also encrypted with A's private key) that includes among other items, the session key generated by the

�This paper is a revised and expanded version of a lecture given by the �rst author at the IEEE Computer Security

Foundations Workshop VI, Franconia,NH, June 15-17, 1993 [Sim93]

1

KGC and a cipher encrypted with B's private key that identi�es A, contains the session key and message

identi�ers, time stamps etc. as called for by the protocol. A decrypts this cipher to recover the session key

and the cipher which only B (and the KGC) can decrypt. A now sends this cipher to B, who decrypts it to

recover the session key, verify who he is communicating with etc. The point is, that trust in the KGC and in

the integrity of the subscriber's secure communication links with the KGC has been transferred to a trust in

the integrity of the communication link established using the session key between two subscribers who had

no prior trusted contact. Simple as this example is, it illustrates most of the essential points involved in the

transfer of trust in an information integrity protocol.

Trust can also be passed between individuals. For example, one individual A may wish to grant another

individualB the right to perform certain actions, on A's behalf. That is, A trusts B to perform these actions.

However, A needs to be able to give B the ability to convince others that A trusts B in this capacity. In

other words, A needs some means of passing on her trust in B to others. Thus A might give B some ticket

signed by A stating that A trusts B. A need for a means of this sort has given rise to a number of proxy

protocols by means of which A can pass on her trust in B to those who trust A (see [VAB91], for example,

for a discussion).

When we decide to pass on trust, we need to determine, not only what the mechanisms for passing on trust

should be, but what the consequences of passing on the trust can be. To give a simple example, suppose that

an action can only be performed by A and B acting jointly. If B trusts A and allows A to act on his behalf,

then the action can be performed by A acting alone. On the other hand, if the action can be performed

only by A and B acting jointly, or A and C acting jointly, and B allows C to act on his behalf, nothing has

changed.

In this paper we will restrict ourselves to the problem of examining the propagation of trust in access control

systems in which an action can only be performed by certain individuals acting in concert. These systems,

known as shared control schemes [Sim91], can have extremely complex structures. The simplest shared

control schemes are unanimous consent schemes, in which an action can only be performed by n designated

individuals all acting in concert. Somewhat more complex is the case in which any k members of a group

of n individuals can perform the action, but no k-1 can. This case may be enforced by the use of threshold

schemes, invented by Blakley and Shamir independently [Bla79, Sha79]. Blakley and Shamir showed how

to construct a system so that any k individuals out of n can recover a secret, but no k-1 can. This secret

can then be used as a token determine whether or not a group is authorized to perform an action. It is also

possible to design shared control schemes for giving authority to any set of individuals out of an arbitrary

set of sets. As in the case of threshold schemes, these can be realized by shared secret schemes. In [JMS91]

Jackson, Martin, and Simmons showed how every such scheme has a perfect geometric realization.

In this paper we look at the problem of determining the e�ects of introducing added trust in shared control

schemes. Such added trust has the property of weakening the scheme, since, as in our example above, new

sets will be empowered to perform the controlled action by this trust. We begin by developing a procedure

for determining, given two shared control schemes X and Y , which trusts of individuals in other individuals

or sets of individuals can produce Y out of X, or, indeed, if this is possible. Next, we look at the structure

of the set of all shared control schemes under the \weaker-than" relationship, for a given set of individuals.

McLean [McL88] has shown that this set together with the weaker-than relationship is a distributive lattice.

We provide an algorithm for constructing the lattice. Finally, we discuss how this lattice can be used in

determining the possible e�ects of passing on trust.

2

2 Trust as a Mathematical Parameter

The simplest example of conditional trust involves two participants, A and B, each of whom is of questionable

trustworthiness when acting alone, but who when compelled to act jointly by an appropriate protocol are

considered to be acceptably trustworthy. We will denote this situation by the logical term AB, read to mean

A and B acting jointly to exercise whatever function they have in the protocol. We won't address here the

critical question of who sets up the protocol, but will simply assume that a protocol has been put in place

to enforce a speci�ed trust relation. If AB is the trust relation speci�ed in a protocol, as was the case in

our earlier example, and if A trusts B, i.e., if he trusts B enough to give him his proxy, then B acting solely

on his own can exercise the protocol. Similarly, if B trusts A, A would be able to act alone, and if both of

these trust relations hold, then either A or B acting alone can exercise the protocol. These relationships are

illustrated in Figure 1.

Figure 1.

De�nition 2.1 We will denote by the symbol � the set of subsets of the participants who are able to exercise

a protocol; called either a concurrence scheme (or scheme when the meaning is clear from the context) or an

access structure. We use the notation � = x1 + ... + xn where the xi's are the members of �. Each element

x of � is in turn denoted as A1:::An where the Aj 's are the elements of x. Thus, if � is ffA;Bg,fB;Cgg, we

denote this as � = AB+BC. The terms in � are called concurrences. The � are monotone logical functions,

meaning that no concurrence in � is a restriction of another concurrence: A and AB cannot both be in the

same scheme since AB is a restriction of A.

Using our observations, it is possible to characterize the partially ordered lattice of access structures and to

determine the trust relationships that are necessary to move from one element to another in the lattice.

Clearly, trust relations among participants can only weaken the control enforced by a protocol, never

strengthen it, i.e., if a speci�ed set of participants can exercise the protocol, trust relations amongst some

of them may result in a proper subset of them being able to do so, but the original set will still have the

capability: AB weakening to A is possible, A strengthening to AB is impossible. Similarly, trust relation-

ships can make it possible for participants (or sets of participants), not originally empowered to exercise the

protocol, becoming able to do so. For example, in the two-person example, A might trust a third person C

and share with him his capability. In that case, the original concurrence scheme in Figure 1 would become

AB +BC instead of AB. If A also trusted B, this would weaken to B. If B trusted AC this would weaken

to AB +AC + BC.

We make the assumption that trust is transitive, that is, if X trusts Y , and Y trusts Z, then X trusts

Z. This has as a result that all transfers of trust are from individuals to other individuals or groups. For

suppose that XY trusts AB. Then, since X trivially trusts XY , we have that X trusts AB.

Using these observations, we can construct the diagram of possible weakenings given by Figure 2.

Figure 2.

Trivial as the example in Figure 2 may seem, it su�ces to illustrate how the lattice of concurrence schemes

can be used to identify trust relations. Assume that a protocol designer has devised a protocol that requires

3

B to cooperate with either A or C in order to exercise their function in the protocol, i.e. the control lattice

shown in Figure 2, and let �1 = AB + BC and �2 = B + AC. The subsets B and AC in �2 could only

have acquired the capability to exercise the protocol from some subset that had the capability in �1. The

notation we use to show this is AB+BC ! B+AC, meaning that the concurrence on the left has empowered

(entrusted) the concurrence on the right. Suppose that we want to determine how B + AC acquired the

capability via trust transfers by individuals. We do this by �rst expanding the trust transfer in the form

((AB ! B) t (BC ! B)) u ((AB ! AC) t (BC ! AC)).

where t stands for logical \or" and u stands for logical \and".

For each term x! y, we determine what transfers of trust from members of x to factors of y will result in

x weakening to y. Consider AB ! AC, for example. The choices for A to trust are A, C, and AC. The

choice of AC is nonsensical, since it is a strengthening of A. A trusting A is a tautology. If A! C, we have

AB weakening to BC, which is not the term we wanted. B's possible trusts that would produce AC out

of BC are B trusting A or B trusting AC. The �rst would turn AB to A, which is weaker than what we

want. The second would turn AB to AC even without A trusting C, so A's trust is unnecessary in this case.

We now look at B's possible trusts. If B ! A, then AB ! A as above. If B ! C, then AB ! AC, and

if B ! AC, as above, then AB ! AC. B ! C and B ! AC. The calculations for BC ! AC are similar,

giving us B ! A or B ! AC.

The computation of the trusts that result in AB ! B are simpler. The only possible transfer is A ! B.

Similarly, BC ! B yields C ! B.

Combining these expressions, we formally get as the family of trust relations that will weaken �1 to �2:

((A! B) t (C ! B)) u ((B ! C) t ((B ! AC) u (B ! A)))

which when expanded becomes six sets of trust relations, that weaken �1 to the access structures shown on

the right:

(A! B) u (B ! C) B + C

(A! B) u (B ! AC) B + AC

(A! B) u (B ! A) A+B

(C ! B) u (B ! C) B + C

(C ! B) u (B ! AC) B + AC

(C ! B) u (B ! A) A+B

From this we see that there are precisely two sets of trust relations that weaken �1 to �2. The other sets of

trust relations that occur in the formal expansion in the example weaken �1 to other elements in the lattice

which are themselves dominated by �1. There is no logical inconsistency to this, since the combined e�ect

of multiple trusts can a�ect (weaken) more terms in a concurrence than just those considered to derive the

individual trusts in the �rst place.

It should be clear from these small examples that the calculation of the set of individual trust relations

needed to weaken one concurrence scheme to another is essentially an exercise in applying the distributive

laws for the reduction andnor expansion of logical expression and determining the possible trust transfers

that will give rise to each term.

4

3 Dominance of Control

In the last section, we showed how to determine the trust relationships that will produce one concurrence

scheme from another. In this section, we study the structure of the \weaker-than" relationship between

concurrence schemes. In particular, we show how to construct the lattice of concurrence schemes under this

relationship.

De�nition 3.1 We say that a concurrence x dominates a concurrence y, written x � y, or that x is a

restriction of y, if y is a subset of x. We say that a concurrence scheme �1, dominates another scheme �2 ,

written �1 � �2, if every concurrence in �1 dominates at least one concurrence in �2. We say that �1 covers

�2 if there is no �3 such that �1 > �3 > �2.

We note that the notion of dominance captures the \weaker-than" relationship in which a concurrence

scheme is made weaker by introducing new permissions. One weakens a concurrence scheme by adding

new concurrences, and removing concurrences that are supersets of the new concurrences. Thus the old

concurrence scheme will dominate the new, weaker, concurrence scheme.

If for example, �1 = AB + AC and �2 = A + BC, then �1 > �2 since AB and AC are restrictions of A,

while BC is not a proper restriction of either AB or AC. On the other hand, if �1 = AB + AC and �2 =

C, �2 does not dominate �1 since even though AC is a restriction of C, AB is not. �2 does not dominate

�1 since C is neither a restriction of AB or AC.

We state and prove the following simple results in a lemma.

Lemma 3.2 Let �1, �2, and �3 be concurrence schemes. Then:

a) If �1 � �2, then �1 > �2.

b) If �1 > �2, then no concurrence of �2 strictly dominates a concurrence in �1.

c) If �1 � �3 � �2, then �1 \ �2 � �3.

Proof: The proof of a) follows from the fact that every element of �1 dominates itself in �2.

To prove b), note that if x 2 �2 strictly dominates y in �1, then by de�nition of the domination of �1 over

�2, there is a z in �2 such that y dominates z. But then x strictly dominates z, which contradicts the

monotone property of concurrence scheme.

To prove c), note that if x 2 �1 \ �2 then x � y 2 �3 and y � z 2 �1. Hence x � z, where both are in �1.

By the monotonicity of �1, we have x = y = z. 2

It is easy to verify that the dominance relation de�nes a partial ordering on access structures which can be

extended to a lattice with greatest lower bound of �1 and �2 to be the access structure obtained by taking

�1 + �2 and removing any element of �1 + �2 that is dominated by any other element of �1 + �2, and least

upper bound of �1 and �2 to be the access structure obtained taking � = �1�2 and removing any element

of � that is dominated by any other element of �. We note that this results in a lattice similar to the

lattice described by McLean in [McL88]. The di�erence between the lattice described here and McLean's

is that, instead of not allowing an access structure � to contain two elements such that one dominates

5

the other, McLean requires that, if x is an element of � then � must also contain all concurrences that

are restrictions of x. The partial order de�ned by McLean is also the reverse of ours. If we reverse the

order on McLean's lattices, this allows us to de�ne a natural isomorphism between this lattice and ours by

mapping a concurrence scheme � in McLean's lattice to the set of all minimal elements of �, which will

de�ne a concurrence scheme in ours. Since the de�nition of McLean's is one of the standard de�nitions of

the free distributive lattice on n generators [Bir67], we can conclude that the lattice of access structures on

n participants is dual-isomorphic to the free distributive lattices on n generators.

Although the lattice of access structures can in principle be computed and exhibited, in practice it is infeasible

for even small numbers of participants. The lattice for three participants, L3 , is shown in Figure 3.

Figure 3.

There is an elegant and simple way, however, to construct both the lattice Ln and the sublattices of Ln

consisting of the concurrence schemes reachable from a speci�c access structure as a consequence of trust

relations that may exist between the participants { up to sizes that probably exceed our ability to mean-

ingfully specify trust relations in the �rst place. Even more important from a design standpoint, given any

particular access structure � , this technique will generate and exhibit only the sublattice reachable from �

in Ln.

De�nition 3.3 Given a lattice L with underlying set S, and a subset A � S, de�ne the closure of A in S,

denoted by Ac, to be the set of elements in S that dominate at least one element of A in L. As is usual in

lattice theory, we adopt the convention that A � Ac. The complement of Ac in S is denoted by SnAc. De�ne

two sets, bAc and dAe, which are most naturally described by the names given these quantities in numerical

analysis; the oor and ceiling functions respectively. As will be apparent in a moment, this nomenclature

has an intuitive appeal in the setting in which it is used here. bAc is the set consisting of the lowest element

in all maximal length chains in Ac in L. Similarly, dAe is the set containing the highest element in all the

maximal length chains in SnAc in L.

For example, let L be the lattice de�ned on the four subsets of the set of two elements under set inclusion,

;, fag, fbg, and fa; bg. Let A= ffagg. Then bAc = ffagg, and dAe = ffbgg.

The lattice de�ned on the 2n subsets of n elements partially ordered by the usual ordering of set inclusion

is isomorphic to the binary n-dimensional hypercube Hn. The image of Hn under the oor function is

precisely the family of all access structures on n participants, i.e. precisely the set of all possible ways

to share capability among n participants. These access structures are in turn partially ordered by the

operation of weakening as a result of trust relations as has been described already. The resulting lattice, Ln,

is constructively de�ned by the following theorem:

Theorem 3.4 Let Hn be the lattice of subsets of n elements partially ordered by set inclusion. Let S be the

underlying set of Hn. Construct the lattice Ln of access structures on n participants by letting the elements

of Ln be sets of elements of Hn. In the lattice, Ln , of access structures on n participants, �1 covers �2 if

and only if there exists an x in d�1e such that

ll�2 = (�1 n Sx) [x where x 2 d�1e and Sx = fy j y 2 �1; y > x 2 Lng:

6

Proof: We will begin by showing that �1 covers �2 = �1nSx [fxg. First we show that �1 > �2. Clearly

every element of �1nSx is a dominates an element of �1nSx. Moreover, every element of Sx dominates x.

Suppose now that there is a �3 such that �1 � �3 � �2. We need to show that either �3 = �1 or �3 = �2.

We will �rst show the conditions under which y can be a member of �3. Suppose that y 2 �3. Then y � z

where z 2 �1nSx, or y � x. In the �rst case, y cannot strictly dominate z, by part b) of Lemma 3.2. Thus

y = z. In the second case, if y � x, then y = x; or y 2 �c

1
by the de�nition of ceiling. We argue that if

y 2 �c

1
, then y 2 �1 and hence Sx. For if not, there would be an element z of �1 such that y > z, and this

would contradict the fact that �1 > �3, by part b) of Lemma 3.2. This shows that �3 is a subset of �1 [x.

Our next step is to show that �3 contains all of �1 n Sx, and either x or Sx, but not both. In that case, we

will have shown that either �3 = �1, or �3 = �2, by the reasoning above. Since both �1 and �2 contain

�1 n Sx, so must �3 by part c) of Lemma 3.2. By part b) of Lemma 3.2, �3 cannot contain both x and any

element of Sx. If it contains neither, then �3 � �1 and hence dominates it by part a) of Lemma 3.2. Thus,

�3 must contain either x or an element of Sx. If it contains x, we are done. If it contains a member of Sx,

then by part a) of Lemma 3.2, �3 > �1 unless �3 also contains all of Sx.

Next we show that, if �1 covers �2, then �2 = �1nSx [fxg. Since by part a) of Lemma 3.2 �2 is not a

subset of �1, there must be an element x of �2 not in �1. This element x dominates no element of �1, so

x 2 Sn�c

1
. If we construct �3 by replacing x with an element y > x in Sn�c

1
, then �1 > �3 > �2, so x must

be maximal, that is x 2 d�1e. Furthermore, by part b) of Lemma 3.2, �2 contains no element of Sx. As a

result, we have that �1 > �1nSx [fxg > �2. Hence we have �1nSx [fxg = �2. 2

d�e is easy to calculate for an access structure �. In 1991 Jackson, Martin and Simmons [JMS91] proved

that every shared control scheme has a perfect realization by a geometrical scheme. As an essential step in

their proof they de�ned a quantity �* which was computed from the concurrence � by interchanging the

multiplicative operation and +. �� can be used to compute d�e as outlined in the following theorem.

Theorem 3.5 Let � be a concurrence scheme. Let S be the set of participants. Then d�e can be computed

according to the following steps:

1. Compute ~� by interchanging the + and x operations.

2. Compute �� by removing each additive term y of ~� for which there exists a term z of ~� such that

y > z.

3. Compute �� by substituting the set complement of z in S for each additive term z of ��.

Then �� is d�e.

Example:

� = AB +ACD

~� = A+ AC +AD + AB +BC +BD

�� = A+ BC + BD

d�e = AC + AD + BCD.

7

Proof:

We �rst note that computing ~� is equivalent to �nding the expression consisting of all terms y = A1:::An

such that Ai is an element of yi, where yi is the i'th term of �. Thus, ~� is the expression containing all

terms y such that such that y has at least one element in common with each term of �. Thus, each term z

of �� has the property that z is missing at least one element of each term of �, so z does not dominate any

term of �.

In other words, �� is constructed from � as follows:

1. ~� = frange(f) j f is a choice function on �g;

2. �� is the set of minimal elements of ~�, and;

3. �� = fS n xjx 2 ��g.

We begin by showing that �� � d�e. By the argument given above, �� � S n �c. What remains to show is

that each element is maximal.

Suppose that y 2 ��. We need to show that, if A is a member of the alphabet of S not in y, then Ay is in �.

We will show that Ay dominates some z in �. Since y 2 ��, y = S n x for some x in ��. Thus x = range(f)

for some choice function f on �. Note that A 2 (S ny = x). We claim that there exists z in � with f(z) = A

and z nA disjoint from x nA. Otherwise, we could construct g mapping some element of z nA to an element

of (z nA) \ (x nA) for every term z with f(z) = A, and the same as f elsewhere, and then range(g) would

be a subset of x nA. This means that x is not minimal, contradicting membership in ��. Hence, choose z in

� with f(z) = A and z nA disjoint from x n A. But then z nA is a subset of S n (x nA) = A(S n x) = Ay,

therefore z is a subset of Ay.

We will now show that d�e � ��. Suppose that y 2 d�e. Then, for each term x of �, y fails to dominate x.

Thus, there is an element A of x such that y does not contain A. This means that there is a term z of ��

such that z � y. But, since y is maximal in S n �c, we have z = y. 2

As an example, consider the case n = 2, and let �1 = a. Then Then d�1e = b, and Sb is empty. Thus the

only element covered by �1 is (�1 n Sb) + b = a+ b. As another example, let n = 3, and let �1 = a+ bc. In

that case, d�1e = c+ b. Sb = bc, and Sc = bc. Then (�1 n Sb) + b = a+ b, and (�1 n Sc) + c = a+ c.

Given a concurrence � on n participants, to calculate the sublattice L� of concurrences reachable from �

in Ln, one �rst calculates d�e and then calculates all of the concurrences directly dominated by � in Ln

using the construction de�ned in the theorem. The concurrences directly dominated by each of these can

then be calculated in turn etc., until the process eventually stops on the concurrence in which each of the n

participants is able to exercise the protocol by himself. As we pointed out earlier, the lattice de�ned by the

construction given in the theorem starting with the unanimous consent scheme in which the concurrence of

all n of the participants is needed to exercise the protocol is dual-isomorphic to the free distributive lattices

with n generators. This is an important observation, since this guarantees that the iterative procedure just

described for generating L� will always terminate in at most 2n steps, since this is the height of the free

distributive lattice with n generators (when the empty set is included). Using the observation that Ln is

dual-isomorphic to the free distributive lattice with n generators, we can draw on known results in lattice

8

theory to tabulate the number of ways, Nn, that the capability to exercise a protocol can be shared among

n participants.

n Nn

1 1

2 4

3 18

4 166

5 7,579

6 7,828,352

7 2,414,682,040,996

Table 1

The super-exponential increase in the number of ways that capability can be shared as a function of the

number of participants makes clear why only modest numbers are usually considered in practice. Figures

1 and 3 depict L2 and L3 respectively. However even L4 would be di�cult to exhibit in a practical sized

�gure. A useful reduction in the lattice can be achieved by exhibiting equivalence classes (under the group of

permutations of element labels) of subsets, instead of the subsets themselves. Figures 4 depicts these lattices

for n up to 4, with a representation of each equivalence class indicated for the case n = 4. The complete

lattic would contain 166 nodes instead of the more manageable 28 equivalence classes shown.

4 The Utility of Ln

Implicitly, when a protocol designer decides that he is willing to accept the risk that a particular concurrence

of the participants will all collude to cheat by improperly exercising their capabilities in the protocol, he

has also decided that the risk of any subset of them colluding to cheat is unacceptably high. In principle

this assumes that he has considered all subsets of the concurrences of participants who are trusted to jointly

execute the protocol and has decided that they all represent unacceptable risks. In practice, the decision is

made the other way around. The designer decides that the risk of collusion is acceptable for some concurrence,

and then gives this group of participants the capability to jointly exercise the protocol.

The utility of the lattice Ln or more speci�cally by the sublattice L� of Ln generated by a particular

concurrence � is that it allows the designer or analyst to precisely evaluate the risk he is accepting. Any set

of participants that have the capability to exercise the protocol can share this capability with any other set

of persons they trust. The nature of these trust relations can be as complex as the trust relations available

to the designer of the protocol in the �rst place. In a scheme involving n persons, any participant has all of

the concurrences possible on n-1 participants available to him to represent his trust of groupings of them.

As shown in Table 1, there are 7579 access structures on 5 participants, i.e. 7579 irreducible and distinct

ways of entrusting a capability to subsets of 5 participants. Each of these 7579 structures is a possible trust

relation by which a participant in a scheme involving 6 participants might conceivably be willing to entrust

his share in a shared control scheme to subsets of the other participants. Consequently, given any access

9

structure, � ,on 6 participants, there are potentially (7579)6 � 1.9 x 1023 possible sets of trust relations to

be considered. Even for such a modest number of participants this is clearly an infeasible number of cases

to examine. On the other hand, given an access structure, �, and the sublattice de�ned by it, L� , it is an

easy matter to de�ne the complete family of trust relations that weaken � to any access structure, �i , it

dominates in L�. An example of the procedure by which this is done was given earlier.

To be more general, let � = �Ci and �i = �Di. If the set Di is not an element in �, then one of the

subsets in � must have shared their capability with the members of Di in order for them to have acquired

the capability. Any set in � arrows each set in Di and as we have seen, the write down rules by which a set

of participants who possess the capability to exercise a function in a protocol can transfer it to a set who

do not are straightforward to see and to mechanize. It is therefore possible to formally construct the entire

family of trust relations that could weaken � to �i . It is then necessary to evaluate the concurrence actually

implied by each member of this family, since as we've seen some of them may be dominated by �i itself.

Ln has two primary applications. Since starting from a given concurrence �1 it is only possible to realize as

a consequence of trust relationships that may exist among the participants those concurrences dominated

by �1 , Ln is a primary tool in protocol analysis. If a protocol has been devised to enforce a concurrence

�1 , then all of the concurrences dominated by �1 in Ln must in a sense also be acceptable risks, since

trust relationships between the participants, over whom and which the protocol designer has no control, can

realize any of these. Figure 2 is an example of this. We constructed the lattice in that case by �rst assuming

that A trusted C so that the initial concurrence was �1 = AB +BC, but the result is simply the sub lattice

in L3, dominated by �1: see L3 , in Figure 4.

The second use for Ln is: given an initial concurrence �1 and another concurrence �2 that it dominates, the

entire family of trust relations that weaken �1 to realize �2 can be easily calculated. Using this procedure

given any initial concurrence �1 and another concurrence, �2 , reachable from it, it is easy to enumerate

the complete family of sets of trust relationships that could cause this to happen. The protocol designer

can then consider each of these sets and decide whether it represents an unacceptable risk or not. From

nonprotocol considerations, he may rule out some trust relationships as too unlikely of occurrence to worry

about. If the unacceptable concurrences all require sets of trust relations that are judged to be so improbable

of occurrence as to be an acceptable risk, then �1 itself represents an acceptable risk. On the other hand, if

the trust relations that result in �2 represents an unacceptable risk for the protocol, he may be compelled to

choose a di�erent �1 so that �2 becomes either unreachable or dependent on trust relationships considered

su�ciently unlikely to occur to provide the desired level of security for the protocol.

The discussion thus far has focused on the question of which groupings of participants can acquire the

capability to exercise a function in a protocol as a consequence of trust among some of them. More relevant

to the question with which this paper began is the converse question of which trusts can be established as a

consequence of those initially in place. We have already shown that it is computationally infeasible to work

forward through all possible trust relation to calculate all of the reachable states { even for very modest

numbers of participants { however, for the deliberate transfer of trust in a protocol, the protocol speci�es

the trust relations at the beginning and hence it is only necessary to calculate those that can be reached in

consequence. This is a feasible calculation for even large numbers of participants.

10

5 Conclusion

The notion of trust as a fundamental dimension in protocol analysis or proof has been introduced as well

as a methodology that makes it possible to rigorously compute the consequences of trust relations. This

methodologymakes it possible for the protocol designer to examine in advance all of the possible concurrences

of participants who may be able to exercise the protocol as a consequence of trusts that may exist amongst

some of them and to decide whether these represent acceptable risks to the integrity of the protocol or not.

If not, since the trust relationships are explicitly de�ned, the methods described here also provide sharp

tools for redesigning the protocol to realize acceptable controls. In a sense, instead of the physical principle,

\For every action, there is an equal and opposite reaction," in protocol design we have the principle, \For

every trust, there is an equal and opposite mistrust."

6 Acknowledgements

We would like to thank the anonymous referees for their helpful comments, especially on the proof for

Theorem 3.5.

References

[Bir67] G. Birkho�. Lattice Theory, pages 59{61. American Mathematical Society, Providence, RI, third

edition, 1967.

[Bla79] G. R. Blakley. Safeguarding Cryptographic Keys. In Proc. AFIPS 1979 Natl. Computer Conf.,

pages 313{317, New York, June 1979.

[JMS91] W. A. Jackson, K. Martin, and G. J. Simmons. The Geometry of Shared Secret Schemes. Bulletin

of the Institute of Combinatorics and its Applications (ICA), 1(1):71{88, 1991.

[McL88] J. D. McLean. The Algebra of Security. In Proceedings of the 1988 IEEE Symposium on Security

and Privacy, pages 2{7. IEEE Computer Society Press, April 18-21 1988.

[Sha79] A. Shamir. How to Share a Secret. Commun. ACM, 22(11):612{613, Nov. 1979.

[Sim91] G. J. Simmons. An Introduction to Shared Secret and/or Shared Control Schemes and Their

Application. In G. J. Simmons, editor, Contemporary Cryptology: The Science of Information

Integrity, chapter 9, pages 441{497. IEEE Press, New York, 1991.

[Sim93] G. J. Simmons. An Introduction to the Mathematics of Trust in Security Protocols. In Proceedings:

Computer Security Foundations Workshop VI, pages 121{127. IEEE Computer Society Press, June

15-17 1993.

[VAB91] V. Varadharajan, P. Allen, and S. Black. An Analysis of the Proxy Problem in Distributed Systems.

In Proceedings of the 1991 IEEE Computer Society Symposium on Research in Security and Privacy,

pages 255{275. IEEE Computer Society Press, May 20-22 1991.

11

